Homological algebra exercise sheet Week 8

- 1. Let $E_{\bullet,\bullet}$ be a first quadrant double complex with horizontal differentials d^h and vertical differentials d^v . Define the page E^0 as follows: for integers $p,q\geq 0$, let $E^0_{p,q}=E_{p,q}$ and $d^0_{p,q}=d^v_{p,g}$. Each column $E^0_{p,\bullet}$ forms a chain complex, so we may define $E^1_{p,q}=H_q(E^0_{p,\bullet})$ and let $d^1_{p,q}:E^1_{p,q}\to E^1_{p-1,q}$ be the map that $d^h_{p,q}$ induces on homology. Lastly, note that each row $E^1_{\bullet,q}$ forms a chain complex, so we may define $E^2_{p,q}=H_p(E^1_{\bullet,q})$. The purpose of this exercise is to calculate the differentials $d^2_{p,q}:E^2_{p,q}\to E^2_{p-2,q+1}$.
 - (a) Show that $E_{p,q}^2$ can be presented as the group of all pairs (a,b) in $E_{p-1,q+1} \times E_{p,q}$ such that $0 = d^v b = d^v a + d^h b$, modulo the relation that these pairs are trivial: (a,0); $(d^h x, d^v x)$ for $x \in E_{p,q+1}$; and $(0,d^h c)$ for all $c \in E_{p+1,q}$ with $d^v c = 0$.
 - (b) If $d^h(a) = 0$, show that such a pair (a, b) determines an element of $H_{p+q}(T)$, where T is the total complex of the double complex $E_{\bullet, \bullet}$.
 - (c) Show that the formula $d(a,b)=(0,d^h(a))$ determines a well-defined map

$$d_{p,q}^2: E_{p,q}^2 \to E_{p-2,q+1}^2.$$

2. In this exercise, $E_{\bullet,\bullet}$ is still a first quadrant double complex, and E^0, E^1 and E^2 are the pages of the same spectral sequence described in the previous exercise. Let T be the total complex of the double complex $E_{\bullet,\bullet}$. By diagram chasing, show that $E_{0,0}^2 = H_0(T)$, and that there is an exact sequence

$$H_2(T) \to E_{2,0}^2 \stackrel{d}{\to} E_{0,1}^2 \to H_1(T) \to E_{1,0}^2 \to 0.$$

3. Suppose that a spectral sequence converging to H_* has $E_{pq}^2 = 0$ unless q = 0, 1. Show that there is a long exact sequence

$$\cdots \to H_{p+1} \to E_{p+1,0}^2 \xrightarrow{d} E_{p-1,1}^2 \to H_p \to E_{p,0}^2 \xrightarrow{d} E_{p-2,1}^2 \to H_{p-1} \to \dots$$

4. (Mapping Lemma for E^{∞}) Let $f: \{E^r_{pq}\} \to \{E'^r_{pq}\}$ be a morphism of spectral sequences such that for some $r, f^r: E^r_{pq} \cong E'^r_{pq}$ is an isomorphism for all p and q. Show that $f^{\infty}_{pq}: E^{\infty}_{pq} \cong E'^{\infty}_{pq}$ as well.

1